
8
Algorithm for Binary Searching in
Trees

In this section we present our algorithm for binary searching in trees.

A crucial observation employed by the algorithm is that this problem can be

efficiently solved when the input is a path-like tree. This is true because it

can be easily reduced to the well-solved problem of searching a hidden marked

element from a total order set U in a sorted list L ⊆ U of elements where

each element U has a given probability of being the marked one [PS93] (see

appendix). Due to this correspondence, an approximate strategy for searching

in lists gives an approximation (with the same guarantee) for searching in

path-like trees.

Motivated by this observation, the algorithm decomposes the input tree

into special paths, finds decision trees for each of these paths (with modified

weight functions) and combine them into a decision tree for the original tree.

In our analysis, we obtain a lower bound on the optimal solution and an upper

bound on the returned solution in terms of the costs of the decision trees for

the paths. Thus, the approximation guarantee of the algorithm is basically

a constant times the guarantee of the approximation used to compute the

decision trees for the paths. Throughout the text, we present the execution

and analysis of the algorithm over an instance (T,w), where T is rooted at

node r.

Recall that for every node u ∈ T , the cumulative weight of u is the sum

of the weights of its descendants, namely w(Tu). Moreover, recall that a heavy

path Q of T is defined recursively as follows: r belongs to Q; for every node u

in Q, the non-leaf children of u with greatest cumulative weight also belongs

to Q.

Let Q = (q1 → . . . → q|Q|) be a heavy path of T . We define T qi
=

Tqi
− Tqi+1

, for i < |Q| and T q|Q|
= Tq|Q|

. In addition, we define T j
qi

as the

jth heaviest maximal subtree rooted at a child of qi not in Q (Figure 8.1).

Note that these definitions are slightly different from the ones presented in the

previous part of this work. Finally, let ni denote the number of children of qi

DBD
PUC-Rio - Certificação Digital Nº 0611918/CA

Chapter 8. Algorithm for Binary Searching in Trees 55

which do not belong to Q and define ej
i as the arc of T connecting the node qi

to the subtree T j
qi
.

q1

T 1

3

q3

q5

T 1

T 2

3

T 3

T 5

T 1

1

T 1

5

Figure 8.1: Example of structures T qi
and T j

qi
.

Now we explain the high level structure of the solution returned by the

algorithm. The main observation is that we can break the task of finding

the marked node in three stages: first finding the node qi of Q such that T qi

contains the marked node, then querying the arcs {ej
i}j to discover which tree

T j′

qi
contains the marked node or that the marked node is qi, and finally (if

needed) locate the marked node in T j′

qi
. The algorithm follows this reasoning:

it computes a decision tree for the heavy path Q, then a decision tree for

querying the arcs {ej
i} and recursively computes a decision tree for each tree

T j
qi
.

Now we present the algorithm itself, which consists of the following five

steps:

(i) Find a heavy path Q of T and then for each qi ∈ Q define w′(qi) =

w(T qi
)/w(T).

(ii) Calculate a decision tree DQ for the instance (Q,w′) using the approxi-

mation algorithm presented in [PS93].

(iii) Calculate recursively a decision tree Dj
i for each instance (T j

qi
, w).

(iv) Build a decision tree Di for each T qi
as follows. The leftmost path of Di

consists of nodes corresponding to the arcs e1
i , . . . , e

ni

i , with a node uqi

appended at the end. In addition, for every j, Dj
i is the right child of the

node corresponding to ej
i in Di (Figure 8.2).

(v) Construct the decision tree D for T by replacing the leaf uqi
of D by Di,

for each qi ∈ Q (Figure 8.3).

It is not difficult to check that the decision tree D computed by the

algorithm is a valid decision tree for T .

DBD
PUC-Rio - Certificação Digital Nº 0611918/CA

Chapter 8. Algorithm for Binary Searching in Trees 56

qi

e1

i e2

i e3

i

(a)

T 1

i
T 2

i
T 3

i

D
1

i

D
2

i

D
3

i

ue1

i

ue2

i

ue3

i

uqi

(b)

Figure 8.2: Illustration of Step (iv) of the algorithm. (a) Tree T with heavy
path in bold. (b) Decision tree Di for T i.

(a)

uq1
uq2

uq3

uq4

D1

(b)

D2
D3

D4

Figure 8.3: Illustration of Step (v) of the algorithm. (a) Decision tree DQ built
at Step (ii). (b) Decision tree D constructed by replacing the leaves {uqi

} by
the decision trees {Di}.

8.1 Upper Bound

As the trees {T j
qi
} and Q form a partition of the nodes of T , we analyze

the distance of the root of D to the nodes in each of these structures separately

in order to upper bound the cost of D.

First, consider a tree T j
qi

and let x be a node in T j
qi
. Noticing that ux is

a leaf of the tree Dj
i , the path from r(D) to ux in D must contain the node

r(Dj
i). Then, by the construction made in Step (iv), the path from r(D) to

ux in D has the form (r(D) ; ue1
i
→ ue2

i
→ . . . → uej

i
; r(Dj

i) ; ux).

Notice that the path (r(D) ; ue1
i
) in D is the same as the path (r(D) ; uqi

)

in DQ. In addition, the path from r(Dj
i) to ux is the same in D and in Dj

i .

Employing the previous observations, we have that the length of the path

(r(D) ; ue1
i
→ ue2

i
→ . . . → uej

i
; r(Dj

i) ; ux) is:

d(r(D), ux, D) = d(r(D), uqi
, DQ) + j + d(r(Dj

i), ux, D
j
i)

Now we consider a node qi ∈ Q. Again due to the construction made in

Step (iv) of the algorithm, it is not difficult to see that the path from r(D)

to uqi
in D traverses the leftmost path of Di, that is, this path has the form

DBD
PUC-Rio - Certificação Digital Nº 0611918/CA

Chapter 8. Algorithm for Binary Searching in Trees 57

(r(D) ; ue1
i
→ ue2

i
→ . . . → ue

ni
i

→ uqi
). Because the path (r(D) ; ue1

i
) in D

is the same as the path (r(D) ; uqi
) in DQ, it follows that the length of the

path from the root of D to uqi
is d(r(D), uqi

, DQ) + ni.

Weighting the distance to reach nodes in {T j
qi
} and in Q, we find the cost

of D:

cost(D,w) =
∑

qi∈Q

∑

j

d(r(D), uqi
, DQ)w(T j

qi
) +

∑

qi∈Q

∑

j

j · w(T j
qi
)

+
∑

qi∈Q

∑

j

∑

x∈T j
qi

d(r(Dj
i), ux, D

j
i)w(x)

+
∑

qi∈Q

d(r(D), uqi
, DQ)w(qi) +

∑

qi∈Q

niw(qi)

=
∑

qi∈Q

d(r(D), uqi
, DQ)w(T qi

) +
∑

qi∈Q

∑

j

j · w(T j
qi
)

+
∑

qi∈Q

∑

j

cost(Dj
i , w) +

∑

qi∈Q

niw(qi)

= w(T)
∑

qi∈Q

d(r(D), uqi
, DQ)w′(qi) +

∑

qi∈Q

∑

j

j · w(T j
qi
)

+
∑

qi∈Q

∑

j

cost(Dj
i , w) +

∑

qi∈Q

niw(qi)

= w(T) · cost(DQ, w′) +
∑

qi∈Q

∑

j

j · w(T j
qi
)

+
∑

qi∈Q

∑

j

cost(Dj
i , w) +

∑

qi∈Q

niw(qi) (1)

Now all we need is to upper bound the first term of the right-hand

side of previous equality. Notice that cost(DQ, w′) is exactly the cost of

the approximation computed at Step (ii) of the algorithm. As mentioned

previously, we can use the algorithm of [PS93] in this step to find a decision tree

DQ with cost at most H({w′(qi)})+2. Substituting this bound on equality (1)

and observing that w(T) ·H({w′(qi)}) = H({w(T qi
)}), we conclude the upper

bound:

cost(D,w) ≤ H({w(T qi
)}) + 2w(T) +

∑

qi∈Q

∑

j

j · w(T j
qi
)

+
∑

qi∈Q

∑

j

cost(Dj
i , w) +

∑

qi∈Q

niw(qi) (2)

DBD
PUC-Rio - Certificação Digital Nº 0611918/CA

Chapter 8. Algorithm for Binary Searching in Trees 58

8.2 Entropy Lower Bound

In this section we present a lower bound on the cost of an optimal decision

tree for (T,w). Hence, let D∗ be a minimum cost decision tree for (T,w), and

let r∗ be the root of D∗.

Consider a tree T j
qi

and let x be a node in T j
qi
. By definition, the

representative of T j
qi

in D∗ (the node u(T j
qi
)) is an ancestor of the node ux

in D∗. Notice that the representative of T j
qi

is a node in D∗ that corresponds

to some arc (i′, j′) of T j
qi

(that is u(T j
qi
) = u(i′,j′)) and that (i′, j′) is also an arc

of T qi
. Therefore, the definition of representative again implies that u(T j

qi
) is a

descendant of u(T
j

qi
). Combining the previous observations, we have that the

path in D∗ from r∗ to ux has the form (r∗ ; u(T qi
) ; u(T j

qi
) ; ux).

Now consider a node qi ∈ Q; again by the definition of representative,

the path from r∗ to uqi
can be written as (r∗ ; u(T qi

) ; uqi
). Adding the

weighted paths for nodes in {T j
qi
} and in Q, we can write the cost of D∗ as:

OPT(T,w) =
∑

qi

d(r∗, u(T qi
))w(T qi

) +
∑

qi

∑

j

d(u(T qi
), u(T j

qi
))w(T j

qi
)

+
∑

qi

∑

j

∑

x∈T j
qi

d(u(T j
qi
), ux)w(x)

+
∑

qi

d(u(T qi
), uqi

)w(qi) (3)

Now we lower bound each term of the last equation. The idea to analyze

the first term is the following: it can be seen as the cost of the decision tree D∗

under a cost function where the representative of T qi
, for every i, has weight

w(T qi
) and all other nodes have weight zero. Since D∗ is a binary tree, we can

use Shannon’s Coding Theorem to guarantee that the first term of (3) is lower

bounded by ≈ H({w(T qi
)})/c for some constant c. Then we have the following

lemma, which is proved more formally in the appendix:

Lemma 14
∑

qi∈Q d(r∗, u(T qi
), D∗)w(T qi

) ≥ H({w(T qi
)})/ log 3 − w(T)

Now we bound the second term of (3). Fix a node qi ∈ Q; consider two

different trees T j
qi

and T j′

qi
such that d(r∗, u(T j

qi
)) = d(r∗, u(T j′

qi
)). We claim that

u(T j
qi
) and u(T j′

qi
) are siblings in D∗. Because their distances to r∗ are the same,

u(T j
qi
) cannot be a neither a descendant nor an ancestor of u(T j′

qi
). Therefore,

they have a common ancestor, say u(v,z), and one of these node is in the right

subtree of u(v,z) and the other in the left subtree of u(v,z). It is not difficult to

see that u(v,z) can only correspond to either (qi, j) or (qi, j
′). Without loss of

generality suppose the latter; then the right child of u(v,z) corresponds to an

DBD
PUC-Rio - Certificação Digital Nº 0611918/CA

Chapter 8. Algorithm for Binary Searching in Trees 59

arc/node of T j′

qi
, and therefore u(T j′

qi
) must be this child. Due to their distance

to r∗, it follows that u(T j
qi
) must be the other child of u(v,z).

As a consequence, we have that for any level ℓ of D∗, there are at most

two representatives of the trees T j
qi

located at ℓ. This together with the fact

that T j
qi

is the jth heaviest tree rooted at a child of qi guarantees that

ni
∑

j=1

d(u(T qi
), u(T j

qi
))w(T j

qi
) ≥

ni
∑

j=1

⌊(j − 1)/2⌋w(T j
qi
)

≥
ni

∑

j=1

(

j

2
−

3

2

)

w(T j
qi
) (4)

and the last inequality gives a bound for the second term of (3).

Directly employing Lemma 13, we can lower bound the third term of (3)

by
∑

qi,j
OPT(T j

qi
, w).

Finally, for the fourth term we fix qi and note that the path in D∗ con-

necting u(T qi
) to uqi

must contain the nodes corresponding to arcs e1
i , . . . , e

ni

i

(otherwise when traversing D∗ and reaching uqi
we would not have enough

knowledge to infer that qi is the marked node, contradicting the validity of

D∗). Applying this reasoning for each qi, we conclude that last term of (3) is

lower bounded by
∑

qi
ni · w(qi).

Therefore, applying the previous discussion to lower bound the terms of

(3) we obtain that:

OPT(T,w) ≥
H({w(T qi

)})

c
−

5w(T)

2
+

∑

qi,j

j · w(T j
qi
)

2

+
∑

qi,j

OPT(T j
qi
, w) +

∑

qi

niw(qi) (5)

8.3 Alternative Lower Bounds

As in the case of the k-Hotlink Assignment Problem presented in previous

sections, when the value of the entropy H({w(T qi
)}) is large enough, it

dominates the term −5w(T)/2 in inequality (5) and leads to a sufficiently

strong lower bound. However, when this entropy assumes a small value we

need to adopt a different strategy to devise an effective bound.

First alternative lower bound. In order to reduce the additive factor

that appears in (5), we use almost the same derivation that leads from (3)

to (5); however, we simply lower bounded the first summation of (3) by zero.

DBD
PUC-Rio - Certificação Digital Nº 0611918/CA

Chapter 8. Algorithm for Binary Searching in Trees 60

This gives:

OPT(T,w) ≥ −
3w(T)

2
+

∑

qi,j

j · w(T j
qi
)

2

+
∑

qi,j

OPT(T j
qi
, w) +

∑

qi∈Q

niw(qi) (6)

Second alternative lower bound. Now we devise a lower bound without

an additive factor; however it also does not contain the important term
∑

qi∈Q niw(qi). Consider a tree T j
qi

and a node v ∈ T j
qi
. By the definition

of representative, u(T j
qi
) is an ancestor of uv in D∗, thus d(r∗, uv, D

∗) =

d(r∗, u(T j
qi
), D∗) + d(u(T j

qi
), uv, D

∗). Because the trees {T j
qi
} and Q form a

partition of nodes of T , the cost OPT(T,w) can be written as:

OPT(T,w) =
∑

qi,j

d(r∗, u(T j
qi
))w(T j

qi
) +

∑

qi∈Q

d(r∗, uqi
)w(qi) +

∑

qi,j

∑

v∈T j
qi

d(u(T j
qi
), uv)w(v)

First, as the trees {T j
q|Q|

} are single nodes and hence do not contain any

arcs, {u(T j
q|Q|

)} and {uqi
} cannot be the root of D∗. Therefore, at most one

distance d(r∗, u(T j
qi
)) (and with qi 6= q|Q|) of the first two summations of the

previous inequality can be equal to zero, and all others must have value of at

least one. But the construction of the heavy path guarantees that for qi 6= q|Q|

the weight of each of the trees {T j
qi
} is at most w(T)/2. As a consequence,

the first two summations of the inequality can be lower bounded by w(T)/2.

Combining this fact with a lower bound for the last summation provided by

Lemma 13 (with T ′ = T j
qi
) we have:

OPT(T,w) ≥
w(T)

2
+

∑

qi,j

OPT(T j
qi
, w) (7)

8.4 Approximation Guarantee

We proceed by induction over the number of nodes of T , where the base

case is the trivial one when T has only one node. Notice that because each

tree T j
qi

is properly contained in T , the inductive hypothesis asserts that Dj
i is

an approximate decision tree for T j
qi
, namely cost(Dj

i , w) ≤ αOPT(T j
qi
, w) for

some constant α. The analysis needs to be carried out in two different cases

depending on the value of the entropy (henceforth we use H as a shorthand

for H({w(T qi
)}).

DBD
PUC-Rio - Certificação Digital Nº 0611918/CA

Chapter 8. Algorithm for Binary Searching in Trees 61

Case 1: H/ log 3 ≥ 3w(T). Applying this bound to inequality (5) we have:

OPT(T,w) ≥
H

6 log 3
+

∑

qi,j

j · w(T j
qi
)

2
+

∑

qi,j

OPT(T j
qi
, w) +

∑

qi

niw(qi) (8)

Employing the entropy hypothesis to the first term of inequality (2) and

using the inductive hypothesis we have:

cost(D,w) ≤
H(3 log 3 + 2)

3 log 3
+

∑

qi,j

(

j · w(T j
qi
)
)

+
∑

qi,j

αOPT(T j
qi
, w) +

∑

qi

niw(qi)

Setting α ≥ 2(3 log 3+2) it follows from the previous inequality and from

inequality (8) that cost(D,w) ≤ αOPT(T,w).

Case 2: H/ log 3 ≤ 3w(T). Applying the entropy hypothesis and the inductive

hypothesis to inequality (2) we have:

cost(D,w) ≤ (3 log 3 + 2)w(T) +
∑

qi,j

(

j · w(T j
qi
)
)

+
∑

qi,j

αOPT(T j
qi
, w) +

∑

qi

niw(qi)

Adding (α − 1) times inequality (7) to inequality (6) we have:

αOPT(T,w) ≥
(α − 4)w(T)

2
+

∑

qi,j

j · w(T j
qi
)

2
+

∑

qi,j

αOPT(Dj
i , w) +

∑

qi

niw(qi)

Setting α ≥ 2(3 log 3 + 2) + 4 we have that cost(T,w) ≤ αOPT(T,w).

Therefore, the inductive step holds for both cases when α ≥ 2(3 log 3 + 2) + 4.

8.5 Efficient Implementation

Notice that during the presentation and analysis of the algorithm, we

have assumed that the trees {T j
qi
} are ordered by their weights. However,

in order to actually implement Step (iv) of the algorithm, one needs to sort

these trees. As a heavy path decomposition can be computed in linear time

[DL06], it is easy to see that all steps of the steps of the algorithm, besides

this sorting at Step (iv), can be implemented in linear time. Hence, we resort

to an ‘approximate sorting’ to provide a linear time implementation for the

algorithm.

Fix a node qi in Q. Without loss of generality, we assume there are

more than three trees {T j
qi
} (that is ni > 3), otherwise one could sort them

in constant time. In order to simplify the analysis, we use wj = w(T j
qi
) and

W = maxj{wj}. Then we have the sequence WQ = (w1, w2, . . . , wni
), which

is non-decreasing by the definition of the trees {T j
qi
}. Now we partition WQ

DBD
PUC-Rio - Certificação Digital Nº 0611918/CA

Chapter 8. Algorithm for Binary Searching in Trees 62

into blocks with similar weights: for 1 ≤ j < ni, the j-block contains all

elements of WQ with weights in the interval (W/2j,W/2j−1] and the ni-

block contains all elements of WQ with weights in [0,W/2ni−1]. Due to its

order, WQ is the concatenation of these blocks. Defining sj as the index in

WQ of the first element of the j-block1, we have that the for j < ni the j-

block is the sequence (wsj
, wsj+1, . . . , wsj+1−1) and the ni-block is the sequence

(wsni
, wsni

+1, . . . , wni
).

Now we say that WQ′ is an approximate sorting of the weights {wj}

if WQ′ contains first all elements 1-block of WQ, then all elements of

the 2-block of WQ and so on. The sequence WQ′ can be thought as a

permutation of WQ where only elements on the same j-block can be permuted.

Defining WQ′ = (wσ(1), wσ(2), . . . , wσ(ni)), it follows that the subsequence

(wσ(sj), wσ(sj+1), . . . , wσ(sj+1)) contains the same elements as the j-block of WQ.

As there are only ni ≤ n blocks, we can find an approximate sorting in linear

time using a bucketing strategy.

We claim that
∑ni

j=1 j · wσ(j) ≤ 3
∑ni

j=1 j · wj. For every 1 ≤ j < ni, it

follows from the definition of j-block and the relationship between the elements

of WQ′ and the blocks of WQ that:

sj+1−1
∑

k=sj

k · wk ≥
W

2j

sj+1−1
∑

k=sj

k =
1

2

W

2j−1

sj+1−1
∑

k=sj

k

 ≥
1

2

sj+1−1
∑

k=sj

k · wσ(k) (9)

In addition, because for every k ≥ sni
we have wσ(k) ≤ W/2ni , the

sum
∑ni

k=sni
k · wσ(k) can be upper bounded by n2

i (W/2ni). Therefore, for

ni > 3 this term can be upper bounded by W . Combining with the fact that
∑ni

k=1 k · wk ≥ W we have that
∑ni

k=sni
k · wσ(k) ≤

∑ni

k=1 k · wk.

Using the previous inequality together with inequality (9), we have:

ni
∑

k=1

k · wσ(k) =

ni−1
∑

j=1

sj+1−1
∑

k=sj

k · wσ(k) +

ni
∑

k=sni

k · wσ(j)

≤ 2

ni−1
∑

j=1

sj+1−1
∑

k=sj

k · wk +

ni
∑

k=1

k · wk ≤ 3

ni
∑

k=1

k · wk

Now suppose that instead of using an exact sorting our algorithm uses

an approximate sorting of the trees {T j
qi
}, by means of permutations σqi

. It is

easy to see that the only impact this modification has to the upper bound of

the algorithm occurs in the second term of the right-hand side of inequality

(2), with
∑

j j · w(T j
qi
) being replaced by

∑

j j · w(T
σqi

(j)
qi). Then the previous

1In order to avoid a heavier notation, we assume that each j-block is nonempty.

DBD
PUC-Rio - Certificação Digital Nº 0611918/CA

Chapter 8. Algorithm for Binary Searching in Trees 63

argument implies that this approximate sorting introduces a multiplicative

factor of three in second term of (2) and it is straight forward to check this

does not alter the guarantee of the algorithm.

Theorem 6 There is a linear time algorithm which provides a constant factor

approximation for the problem of binary searching in trees.

DBD
PUC-Rio - Certificação Digital Nº 0611918/CA

